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The computation approach to the simulation of electrical conductivity of colloidal dispersions during
aggregation is considered. We use the two-dimensional diffusion-limited aggregation model with multiple-seed
growth. The particles execute a random walk, but lose their mobility after contact with the growing clusters or
seeds. The two parameters that control the aggregation are the initial concentration of free particles in the
system p and the concentration of seeds �. The case of �=1, when all the particles are the immobile seeds,
corresponds with the usual random percolation problem. The other limiting case of �=0, when all the particles
walk randomly, corresponds to the dynamical percolation problem. The calculation of electrical conductivity
and cluster analysis were done with the help of the algorithms of Frank-Lobb and Hoshen-Kopelman. It is
shown that the percolation concentration �c decreases from 0.5927 at �=1 to 0 at �→0. Scaling analysis
was applied to study exponents of correlation length � and of conductivity t. For all ��0 this model
shows universal behavior of classical 2d random percolation with �� t�4/3. The electrical conductivity � of
the system increases during aggregation reaching up to a maximum at the final stage. The concentration
dependence of conductivity ���� obeys the general effective medium equation with apparent exponent
ta��� that exceeds t. The kinetics of electrical conductivity changes during the aggregation is discussed. In
the range of concentration pc���� p�0.5927 the time of percolation cluster formation �c decreases with
increasing �.
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I. INTRODUCTION

Conductometric techniques are frequently used in the
study of composite colloids, suspensions, and emulsions �1�.
The conductance behavior is a complex function of particle
concentration, their size, form and geometrical arrangement,
particle-to-medium conductivity ratio �p /�m, degree of ag-
gregation, temperature, and many other factors �2�.

A quantitative prediction of the effective electrical con-
ductivity � of such systems is a difficult problem dating back
to work by Maxwell �3�. For binary systems considered in
this paper in the vicinity of percolation threshold p� pc the
effective conductivity behaves as a power law �4�

� = �m��pc − p�/pc�−s at pc � p , �1�

and

� = �p = ��p − pc�/�1 − pc��t at pc � p , �2�

where p is the filling fraction of the particles with conduc-
tivity �p, pc is the critical percolation concentration, s and t
are the electrical conductivity exponents, s= t�4/3 in 2d,
and s�0.73, t�2.0 in 3d �4�.

For fitting of conductivity data in the entire composition
range, 0	 p	1, the empirical model �5� based on combina-
tion of the mean-field and percolation theories is commonly
used. This model is applicable to systems with strong perco-
lation effects and it gives the general effective medium
�GEM� equation:

�1 − p���m
1/s − �1/s�

�m
1/s + A�1/s +

p��p
1/t − �1/t�

�p
1/t + A�1/t = 0, �3�

where A= �1− pc� / pc.

Modifications for the GEM equation for anisotropic sys-
tems are discussed in Ref. �6�. The different aspects of the
electrical conductivity of heterogeneous systems are compre-
hensively reviewed in Ref. �7�. The major restriction of the
GEM equation is in the neglecting of the real geometrical
arrangement and aggregation of the particles. The introduc-
tion of the percolation theory in the calculations accounts for
the network formation in the systems. But percolation pa-
rameters of the model s , t , pc are empirically fitted to the
experimental data �5� and do not have a clear correlation
with the real microstructural geometrical arrangement of the
particles. It is well known that interaction between particles
influences the value of the percolation threshold pc �8� and
long-range correlations result in nonuniversality of critical
exponents dependent on a parameter that characterizes the
nature of the correlations �9�. The dependence of the electri-
cal conductance � versus concentration p may reflect the
existence of interparticle interactions and their aggregation in
correlated-percolation model �10�. Experimentally the influ-
ence of aggregation on conductance was studied in only a
limited number of works �11,12�. A simplified model de-
scribing changes in electrical conductivity during irreversible
aggregation of colloidal systems was previously reported in
Ref. �11�.

The purpose of this paper is to analyze the electrical con-
ductivity for a two-dimensional multiple-seed diffusion-
limited aggregation �DLA� model �13� and to demonstrate a
correlation between the character of the � vs p curves and
the parameters that control aggregation.
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II. AN AGGREGATION MODEL AND THE DETAILS
OF CALCULATION

In this work we used the two-dimensional model of
diffusion-limited aggregation at multiple growth sites that is
similar to those proposed in Ref. �13�. This model generates
clusters with fractal structure on short length scales and a
uniform structure on long length scales. Initially the
N= pL2 particles are randomly placed on a square lattice of
size L
L. The concentration of particles is defined as p
=N /L2, 0� p�1. A fraction of particles Ns=�N, where � is
the concentration of immobile seeds �0	�	1� are identi-
fied as growth sites and kept fixed. The other particles are
mobile and execute random walks until they come in contact
with one of the growing clusters or seeds. The initial number
of mobile particles Nm=N�1−�� continuously decreases un-
til complete aggregation for the system. Each attempt of the
particle to move is one time step, denoted by d�=1/Nm.
During the simulations periodic boundary conditions are
used.

When the initial concentration of particles is higher than
some critical value pc the different clusters coalesce and a
percolation cluster spanning the lattice is formed. The case of
�=1, when all particles are immobile seeds, corresponds to
the usual random percolation problem �4�. The other limiting
case �=0, when the particles continuously undergo random
walks, corresponds to the dynamical percolation problem
�14�.

In order to identify clusters and determine the percolation
concentration pc, we used a cluster numbering algorithm by
Hoshen and Kopelman �4,15�. The value of pc for a single
configuration was determined to a precision of 1/L2. The
percolation threshold for the infinite system pc

� was esti-
mated using the finite-size scaling relation �4�

pc�L� = pc
� + aL−1/�, �4�

where a is a constant and � is a correlation length exponent.
The value of � was estimated by analyzing the scaling

behavior of standard deviation of percolation concentration,
�pc=��pc

2�− �pc�2,

�pc 
 L−1/�. �5�

The electrical conductivity of the system was calculated
as follows. The lattice sites were replaced by equivalent
resistors as shown in Fig. 1. For studying strong percolation
effects we suppose that particles are conductors and
their electrical conductivity �p is very high compared to the
electrical conductivity of the medium �m �these are empty
sites on the lattice�. In this work the ratio of electrical
conductivities f =�p /�m was 109. For calculating the conduc-
tance of lattices we used an algorithm by Frank and
Lobb �16� and data are averaged over 100 different initial
configurations.

III. RESULTS AND DISCUSSION

A. Percolation threshold pc

Figure 2 presents the dependences of the standard devia-
tion �pc versus size of lattice L obtained for the different

values of �. The dashed lines correspond to the classical
correlation length index �=4/3 of a 2d random percolation
problem �4�. As follows from presented data in the limit of
large systems, L→�, the classical scaling behavior with in-
dex �=4/3 is observed for different �. For small systems
deviations from scaling law of Eq. �4� are evident. This be-
havior can be explained by the influence of the lattice size on
the regime of isolated cluster growth in the model of mul-
tiple growth sites. This regime is important when the sepa-
ration between growth sites is large �13�.

For systems of small size, L�Lc�1/�p�, the number of
growth sites is limited that is illustrated by the patterns pre-
sented in Fig. 2 for L=64 �1 growth site� and for L=256 �28
growth sites�

Figure 3 presents percolation threshold pc
� versus concen-

tration of immobile seeds �. At �=1 the model under con-

FIG. 1. On the calculating the conductance of lattice. Each site
is substituted by four resistances. It is assumed that the particles
represent more electrically conductive phase with conductivity �p

�shown in a gray color� and conductivity of a matrix �m is low
�shown in a white color�.

FIG. 2. Standard deviation of percolation concentration �pc ver-
sus lattice size L at different values of immobile seed concentration
�. Dashed lines correspond to the slope −3/4. Patterns display clus-
ter structures at L=64 and L=256 for �=10−3 at the percolation
point. The percolation clusters are shown in black color and other
clusters in gray. The values of �pc are calculated for the simulation
of 1000 different starting configurations.
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sideration is equivalent to the model of random percolation
for which pc

��0.5927. The percolation threshold pc
� de-

creases with decreasing �. So, the model of diffusion-limited
aggregation with multiple growth sites represents a variant of
the correlated-percolation model when the percolation
threshold pc

� depends on a parameter characterizing the na-
ture of correlations, namely � �8�.

The character of pc
� vs � dependence may be qualitatively

estimated, at least at small �, from the following consider-
ations. At ��1 the separation between growth sites is large
and in early stage of aggregation the isolated clusters grow at
different seeds. As the percolation threshold is approached,
the clusters come into contact and form a continuous net-
work of connected particles.

At the percolation point the mean distance between seeds
is of order

r � ��pc
��−1/d, �6�

where d=2 is the Euclidian dimension.
The maximal radius of a fractal aggregate is of order

Rc � �pa�−1/�d−df�, �7�

where pa�pc
� is the mean concentration of particles inside the

aggregate and df is an effective fractal dimension.
At the percolation threshold where r�Rc we have

pc
� � b�d/df−1, �8�

where b is a constant.
Using relation df �d / �1+�lnpc

� /�ln��, that follows from
Eq. �8� the effective fractal dimensionality of clusters df vs �
was calculated �Fig. 3�. The value of df decreases with de-
creasing � approaching the value df ,DLA�1.71 characteristic
for the DLA model �17� in the limit of �→0. This is reason-
able, because in limit of �→0, the growth of isolated clus-
ters by the DLA is the dominating mechanism. The value of
df is equal to 1.896 in the other limit of usual random per-
colation �4�, �→1. But Eq. �8� is unsuitable for estimation
of df at a high value of �, because in this case clusters begin
to coalesce at an early stage of aggregation.

B. Percolation of conductivity

For our model we observe that the electrical conductivity
increases during the course of aggregation to a maximal
value at the final stage of aggregation. Figure 4 shows the
dependences of the maximal conductivity � on the concen-
tration of particles p at different concentrations of immobile
seeds � and lattice size L=512. These dependences are
typical for strong percolation behavior and the abrupt in-
crease of conductivity occurs exactly at percolation threshold
p= pc �L=512�.

The scaling behavior of maximal conductivity � at con-
centration p� pc is illustrated in Fig. 5. Near the percolation
threshold, at p− pc�1, a power law of Eq. �2� with t�4/3 is
fulfilled at different values of �. That means the considered
model displays the same class universality of conductivity
exponent t as for random percolation model �16�. Note, that
power law of Eq. �2� is satisfactorily fulfilled in the full
composition interval up to p=1 at high seeds concentration,
��1, but this composition interval decreases with decreas-
ing of � �Fig. 5�.

For testing the possibility of application of the GEM
equation for fitting of ��p� curves as in Ref. �18� we intro-
duce the percolation connectivity defined as:

FIG. 3. Percolation threshold pc
� and effective fractal dimension-

ality of clusters df vs concentration of immobile seeds �.
Arrows show the values of df ,RP�1.896 �see Ref. �4�� for random
percolation and df ,DLA�1.71 �see Ref. �17�� for DLA model,
respectively.

FIG. 4. Conductivity � vs concentration of particles p at
different concentrations of immobile seeds �. The size of lattice is
L=512.

FIG. 5. The maximal conductivity � vs deviation from threshold
concentration p− pc��� at different concentration of immobile seeds
�. The slopes of dashed lines are 4/3. The size of lattice is
L=512.
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C = ��1/t − �m
1/t�/��p

1/t − �m
1/t� . �9�

The value of C is dimensionless, monotonic in p, varies
from 0 to 1 and is a function of the conductance ratio
f =�p /�m. Equation �3� in the limit �p /�m→� has the
simple solution

C = �p − pc�/�1 − pc� at p � pc. �10�

So, the GEM equation predicts that the connectivity C is
linear in p for p� pc. For the present model the linear rela-
tion in Eq. �9� gives a satisfactory fit to C�p� curves at dif-
ferent � �Fig. 6�.

Noticeable deviations are observed only in the vicinity
of the percolation threshold for small values of �. The inset
in Fig. 6 shows apparent conductivity exponent ta versus
the concentration of immobile seeds � calculated by fitting
of experimental data with the GEM equation �Eq. �3��.
The apparent conductivity exponent ta is nonuniversal and
increases with decreasing of �. This nonuniversality reflects
only the influence of details of aggregates structure on
the connectivity C versus concentration p behavior described
with the help of the GEM equation. This equation is satisfied
in the wide range of concentration pc	 p	1, through
near the percolation threshold, in the limit p→pc, the con-
sidered model belongs the random percolation universality.
The difference between conductivity t and apparent conduc-
tivity ta exponents is related with different intervals of p used
for estimations of these values. Note, that in experimental
estimations the wide composition interval pc	 p	1 is com-
monly used for estimation of conductivity exponent and
the reported values of ta are considerably higher than univer-
sal value of t for random percolation �19�. We suppose that
observed nonuniversality of the apparent conductivity expo-
nent estimated from data in a wide composition interval pc
	 p	1 may reflect the influence of the details of geometri-
cal arrangement or aggregate structure on the conductivity
behavior.

C. Conductivity changes during the aggregation

Figure 7 shows the variation of the typical electrical con-
ductivity � versus time � during aggregation. The presented
data correspond to the lattice size of L=128, concentration of
immobile seeds �=10−3, and percolation concentration
pc=0.413.

The percolation time �c in all cases was estimated as the
time when the mean conductivity of the system is equal ap-
proximately to ��p�m �dashed line in Fig. 7�. At early stages
of aggregation the conductivity is the same as for random
percolation model, then it increases during the aggregation
and in case of p� pc the final conductivity exceeds the
value of ��p�m. The percolation time is a decreasing func-
tion of the particle concentration p �Fig. 8�. In the limit of
p→pc��� the percolation time �c→�, and in the other limit
of p→pc��=1�	0.5927 �case of random percolation� the
percolation time �c→0.

The percolation time �c��� near the percolation point
p� pc��� can be estimated as the time of formation of ag-
gregates with radius Rc as defined by Eq. �7�. Initially all

FIG. 6. Percolation connectivity C �Eq. �9�� vs the concentration
of particles p at different �. Symbols represent the simulation data.
Solid lines correspond to the fitting of simulation data with the
GEM equation �Eq. �3�� for 2d systems. The inset shows the appar-
ent conductivity exponent ta vs concentrations of immobile seeds �.
The size of the lattice is L=512.

FIG. 7. Electrical conductivity � vs time of aggregation at
different initial concentrations of particles p. The size of lattice is
L=128 and concentration of immobile seeds is �=10−3.

FIG. 8. Percolation time �c vs particles concentration p at dif-
ferent concentrations of immobile sites �. The dashed vertical lines
show percolation concentrations pc=0.413,0.485,0.5927 for values
of �=0.001,0.01,1, respectively. The inset shows �c�

1/2 vs scaled
particles concentration x. The size of lattice is L=128.
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particles are distributed randomly in space and �c��� is pro-
portional to Rc���. Taking into account Eqs. �7� and �8� we
obtain �c���
�−1/d=�−1/2.

We now scale the particle concentration as

x = �p − pc����/�pc
RP − pc���� �11�

in the interval pc���� p� pc
RP, and look for universal behav-

ior with � scaled as

�c��� = �−1/2f�x� , �12�

where f is an unknown function of x.
This assumption is supported by the inset in Fig. 8, where

the data for �=0.001 and �=0.01, presented as �c�
1/2 vs x,

evidently collapse onto a single master curve. We thus find a
scaling behavior �c
x−� in the limit of x→0. The dashed
line in the inset in Fig. 8 corresponds to a scaling exponent
��0.2 but at this stage we have no reasonable explanation
for this behavior.

IV. CONCLUSIONS

In this work we have developed a computer simulation
approach for study of electric conductivity variation and
percolation in a colloidal dispersion during aggregation in
two-dimensional systems. The aggregation was simulated

with the multiple growth-site DLA model �13�. The concen-
tration of immobile seeds � influences the percolation con-
centration but at all values of 0��	1 this model shows the
universal behavior of classical 2d random percolation with
�� t�4/3. The present results confirm that the general ef-
fective medium model can be successfully used for the fitting
of conductivity data in the entire composition range. The
estimated apparent conductivity index is nonuniversal and
increases with decreasing �. This nonuniversality reflects
only the influence of details of the structure of the aggregate
on the connectivity C versus concentration p behavior de-
scribed with the help of the GEM equation. The experimen-
tally observed nonuniversality of apparent conductivity ex-
ponent ta may be possibly related with the rather wide
concentration intervals commonly used for estimation of ta.
We have observed that the time of percolation cluster forma-
tion �c decreases with increasing of � in the particle concen-
tration range of pc���� p�0.5927. Further studies are in
progress in which the conductivity changes are induced by
cluster-cluster diffusion limited aggregation.
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